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Abstract 
In this article, an analysis is carried out to study the effects of aligned magnetic field, radiation absorption and viscous 

dissipation on the MHD unsteady convective heat and mass transfer flow of a viscous incompressible electrically 

conducting and heat absorbing fluid along a vertical porous plate embedded in a porous medium with variable 

temperature and concentration. This study is carried out as effect of aligned magnetic field has not been considered so 

far.  The effects of various flow parameters affecting the flow field are discussed.   
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INTRODUCTION 
Flow problems through porous media over flat surfaces 

are of great theoretical as well as practical interest in 

view of their applications in various fields such as 

aerodynamics, extraction of plastic sheets, cooling of 

infinite metallic plates in a cool bath, liquid film 

condensation process and in major fields of glass and 

polymer industries. The study of heat and mass transfer 

with magnetic field effect is of considerable importance 

in chemical and hydrometallurgical industries. 

Soundalgekar, [1972] studied the viscous dissipation 

effects on unsteady free convective flow past an infinite 

vertical porous plate with constant suction. The two 

dimensional unsteady free convective and mass transfer 

flow of an incompressible viscous dissipative and 

electrically conducting fluid past an infinite vertical 

porous plate was examined by Gregantopoulos et al. 

[1981]. Kinyanjui et al. [2001] solved the problem of 

MHD free convective heat and mass transfer of a heat 

generating fluid past an impulsively started infinite 

vertical porous plate with Hall current and radiation 

absorption by using a finite difference scheme. The effect 

of the viscous dissipation term along with temperature 

dependent heat source/ sink on momentum, heat and mass 

transfer in a visco-elastic fluid flow over an accelerating 

surface was studied by Sonth et al. [2002]. Cookey et al. 

[2003] investigated the influence of viscous dissipation 

and radiation on unsteady MHD free convective flow past 

an infinite heated vertical plate in a porous medium with 

time dependent suction. Aissa and Mohammadein [2005] 

have analyzed the effects of the magnetic parameter, 

Joule heating, viscous dissipation and heat generation on 

the MHD micropolar fluids that passed through a 

stretching sheet. Salem [2006] investigated the coupled 

heat and mass transfer in Darcy-Forchheimer mixed 

convection from a vertical flat plat embedded in a fluid-

saturated porous medium under the effects of radiation 

and viscous dissipation. Zueco [2007] used network 

simulation method (NSM) to study the effects of viscous 

dissipation and radiation on unsteady MHD free 

convective flow past a vertical porous plate. Prasad and  

 

 

Reddy [2008] investigated radiation and mass transfer 

effects on an unsteady MHD free convective flow past a 

semi-infinite vertical permeable moving plate with 

viscous dissipation. The effects of viscous and joules 

dissipation on MHD flow, heat and mass transfer past a 

stretching porous surface embedded in porous medium 

were studied by Anjali Devi and Ganga [2009]. Hemant 

Poonia and Chaudary [2010] have analyzed the heat and 

mass transfer flow with viscous dissipationon an unsteady 

mixed convective flow along a vertical plate embedded in 

porous medium with suction. The effects of thermal 

radiation and variable viscosity on the unsteady 

hydromagnetic flow of an electrically conducting fluid 

over a porous vertical plate in the presence of viscous 

dissipation and time-dependent-suction has been 

presented by Mahmoud [2009]. Ahmed and Batin [2010] 

presented an analytical model for MHD mixed convective 

radiating fluid with viscous dissipation. Bala Siddulu 

Malga and Naikoti Kishan [2011] have studied the effects 

of viscous dissipation on unsteady free convection and 

mass transfer boundary layer flow past an accelerated 

infinite vertical porous flat plate with suction. The effect 

of magnetic field on unsteady free convective flow of a 

viscous incompressible electrically conducting fluid past 

an infinite vertical porous flat plate embedded in a porous 

medium in the presence of constant suction and heat sink 

has been studied by Das et al. [2011].         

     

In this article an attempt is made to study the effects of 

aligned magnetic field, radiation absorption and viscous 

dissipation on the unsteady convective heat and mass 

transfer flow along a vertical porous flat surface through 

a porous medium with heat source/sink. 

 

MATHEMATICAL FORMULATION 
The two dimensional unsteady free convective flow of a 

laminar viscous incompressible electrically conducting 

and heat (radiation) absorbing fluid past an infinite 

vertical porous plate embedded in an uniform porous 

medium in the presence of heat source or sink with 

constant suction under the action of aligned magnetic 
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field strength B0 has been considered. 
'x -axis is taken 

vertically upward direction along the plate and 
'y -axis 

normal to it as shown in figure 1. 

 
 Fig 1   The flow configuration and co-ordinate system.  

 
In order to derive the fundamental equations we assume 

that (i) the flow variables are functions of y and t only, 

since the plate is infinite in extent (ii) ρ the density of 

the fluid to be constant (iii) the magnetic Reynolds 

number is small so that the induced magnetic field can be 

neglected (iv) the Hall effect, electrical effect and 

polarization effect are neglected (v) the Joule’s 

dissipation term in the energy equation is neglected(vi) 

due to the application of suction at the surface, the fluid 

particles at the edge of the boundary layer will have a 

tendency to get displaced towards the plate surface, 

therefore 
' '

0v v→−   at
'

y → ∞ and this phenomenon is 

clearly supported by the equation of continuity. By using 

Boussinesq’s approximation, the governing equations of 

the flow field are given by 
'
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The initial and boundary conditions are
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in equations (2), (3) and (4) under the boundary condition 

(5), we get 
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The corresponding boundary conditions are 

0, 1 , 1 0
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(10) 

 
Here g is the acceleration due to gravity, ρ is the density, 

σ is the electrical conductivity, β  is the coefficient of 

volumetric thermal expansion, β * is the coefficient of 

volumetric  mass expansion,
'

0v  is a constant suction 

velocity, ν is the coefficient of kinematic viscosity, ω is 

the angular frequency, µ is the coefficient of viscosity, 

Kis the thermal diffusivity, 
'T is the temperature, 

'

wT is 

the temperature at the plate,
'

T∞ is the temperature at 

infinity, cp is the specific heat at constant pressure, Pr is 

the Prandtl number, Sc is the Schmidt number, M  is the 

magnetic field parameter, k is the permeability parameter, 

Gr is  the Grashof number for heat transfer, Gm is the 

Grashof number for mass transfer, Q is the heat  

source/sink parameter, 
1Q  is the radiation absorption 

coefficient , φ is an align angle and Ec is the viscous 

dissipation or Eckert number.

 
 

Method of Solution 

In order to solve equations (7), (8) and (9) we assumeε to 

be very small and the concentration, temperature, velocity 

of the flow field in the neighborhood of the plate as 

0 1( , ) ( ) ( )i tC y t C y e C yωε= +   (11) 

0 1( , ) ( ) ( )
i t

y t y e y
ωθ θ ε θ= +   (12) 

0 1( , ) ( ) ( )i tu y t u y e u yωε= +   (13) 

 

Substituting equations (11) to (13) in to equations (7) to 

(9) respectively and equating the harmonic and non-

harmonic terms and neglecting the coefficients of
2ε , we 

get 

Zeroth order equations:

 

''

0 0C =              (14)                                                                            
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First order equations: 
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The corresponding boundary conditions are 

0 0 0 1 1 10 : 0, 1, 1, 0, 1, 1y u C u Cθ θ= = = = = = =  

0 0 0 1 1 1: 0, 0, 0, 0, 0, 0y u C u Cθ θ→∞ = = = = = =  (20) 

Equations (14)-(19) are non-linear differential equations. 

Using multi parameter perturbation technique and 

choosing Ec<<1, we assume  

 

0 00 01C C Ec C= +                             (21) 

0 00 01Ecθ θ θ= +                             (22) 

0 00 01u u Ec u= +                (23) 

1 10 11C C Ec C= +                (24) 

1 10 11Ecθ θ θ= +                 (25) 

1 10 11u u Ec u= +                                            (26) 

Now using the equations (21) to (26) in to equations (14) 

to (19) and equating the coefficients of like powers of Ec, 

neglecting those of Ec2 because Eckert number Ec is very 

small for incompressible fluid flows, we get the following 

set of differential equations. 
Zeroth order equations: 
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The corresponding boundary conditions are 

00 00 00 10 10 100 : 0, 1, 1, 0, 1, 1y u C u Cθ θ= = = = = = =  

00 00 00 10 10 10: 0, 0, 0, 0, 0, 0y u C u Cθ θ→∞ = = = = = =
   

(33) 

First order equations: 
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The corresponding boundary conditions are 

01 01 01 11 11 110 : 0, 0, 0, 0, 0, 0y u C u Cθ θ= = = = = = =

01 01 01 11 11 11: 0, 0, 0, 0, 0, 0y u C u Cθ θ→∞ = = = = = =
 
(40) 

The ordinary differential equations (27) to (32) and (34) 

to (39)  aresolved subject to the boundary conditions (33)  

and (40) respectively. Then substituting the solutions in 

to equations (21) to (26), we obtained the exact solutions 

for concentration, temperature and velocity.  These are 

not reported here as they are lengthy.   
 

Skin Friction
 

Skin-friction coefficient  at the plate is given by
 

0y

u

y
τ

=

 ∂
=  ∂ 

                   (41) 

The solution is not reported here as it is lengthy 

 

Nusselt Number 

  The rate of heat transfer coefficient Nu at the plate is given  

0y

Nu
y

θ

=

 ∂
=  ∂ 

       (42) 

The solution is not reported here as it is lengthy 

 

Sherwood Number 

The rate of mass transfer coefficient Sh at the plate is 

given by 

0y

c
Sh

y
=

 ∂
=  ∂ 

      (43) 

Using equations (41) and (48), we obtained Sherwood 

number in non –dimensional form as follows 

1

i t
Sh m e

ωε= −       (44) 

 

RESULTS AND DISCUSSION 
In order to get an insight in the physical situation of the 
problem, the numerical values of the velocity, 

temperature, concentration, skin friction, Nusselt number 

and Sherwood number at the plate are obtained for 

different values of the physical parameters involved in 

the flow field and are analyzed.  The value of Sc is taken 
to be 0.66 which corresponds to water-vapor and Pr is 
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taken to be 0.71 which corresponds to air at
025 C  

temperature with one atmospheric pressure. tω is taken 

to be / 2π  and φ is taken to be / 6π .The values of the 

other physical parameters are chosen arbitrarily. 

 

The concentration profile is plotted for different values of 

Schmidt number Sc in figure 2. It is observed that the 

effect of increasing values of Sc is to decrease the 

concentration. The variation of the temperature 

distribution for various values of Pr and  Ec
 

are 
represented in figures 3 and 4 respectively.  Figure 3 

shows the effect of Prandtl number Pr on the temperature 

distribution. It is obvious that with the increase in the 

values of Pr, the temperature across the boundary layer 

decreases. Figure 4 illustrates the influence of the viscous 

dissipation Ec on the temperature profile in the boundary 
layer with respect to heat source parameter. It has been 

observed that as Ec increases, the temperature increases.  

From numerical calculations the same trend is noticed in 

the case of heat sink parameter (Q < 0) 

 
Fig. 2  Effect of Sc on concentration field when ω = 

5.0, ε = 0.2 

 
Fig. 5: Effect of Gr on velocity field when Gm = 0.1, Ec 

= 0.001, M = 1, k = 0.1,Q = 1,Q1 = 0.01, ε = 0.1, ω = 1.0 

 

 
Fig. 3: Effect of Pr on temperature field when Gr = 5, 

Gm = 1, M = 1, Ec = 0.002, K = 1, Q = 1, Q1 = 0.5, ε = 

0.2, ω = 1.0 

 

 
Fig. 4: Effect of Ec on temperature field when Gr = 10, 

Gm = 10, M = 1, k = 1, Q = 1, Q1 = 0.5, ε = 0.2, ω = 1.0 
 

The dimensionless temperature profiles for different 

values of heat source parameter (Q >  0) are calculated 

numerically.  .It is noted that increasing the values of 

heat source parameter causes a reduction in the fluid 

temperature. The same phenomenon is observed in the 

case of heat sink parameter (Q < 0). The effect of 

radiation absorption coefficient 
1Q  on the temperature 

field due to heat source parameter is calculated 

numerically and it is observed that the temperature 

decreases as 
1Q increases. From numerical calculations a 

reverse trend is noticed in the case of heat sink parameter. 

In figure 5, the velocity profile is plotted for various 

values of thermal Grashof number Gr. It is observed that 

the main stream velocity increases with an increase in the 

thermal Grashof number Gr. From numerical 

calculations, the same trend is noticed with the effect of 

mass Grashof number Gm. 
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Fig. 6: Effect of M on velocity field when Gr = 5, Gm = 

0.1, Ec = 0.001, k = 0.1,Q = 1, Q1 = 0.01, ε = 0.1, ω = 1.0 

 

Fig. 8: Effect of φ on velocity field when Gr = 5, Gm = 

0.1, Ec = 0.001, M = 1,  k = 0.1, Q = 1, Q1 = 0.01, ε = 0.1, 

ω = 1.0 

 

Fig. 7: Effect of  k on velocity field when Gr = 5, Gm = 

0.1, Ec = 0.001, M = 1,

 

Q = 1, Q1 = 0.01, ε = 0.1, ω = 1.0 

 

 

Fig 9: Effect of Ec on velocity field when Gr = 5, Gm = 

0.1, M = 1, k = 1,Q = 1, Q1 = 0.01, ε = 0.1, ω = 1.0

 

The influence of the magnetic field parameter M on 

velocity profile is predicted in figure 6. It shows that a 

growing magnetic field parameter retards the velocity of 

the flow field at all points. The effect of permeability 

parameter k is studied and the results are exhibited in 

figure 7. It is observed that the velocity increases with 

increasing permeability parameter k. Figure 8 depicts the 

effect of an angleφ  on the velocity field. The magnitude 

of the velocity decreases with increase of angleφ .  

 
The variation of the velocity profile is shown in the figure 

9 for varying values of viscous dissipation Ec with 

respect to heat source parameter. The velocity increases 

with an increase of Ec. From numerical calculations, it is 

found that increasing heat source parameter retards the 

velocity of the flow field at all points. The influence of 

radiation absorption coefficient 
1Q  on the velocity 

profile in the presence of heat source parameter is 

calculated numerically. It is observed that the velocity 

decreases with an increase of
1Q . 

 

CONCLUSIONS 
Based on the results and discussions, the following 

conclusions have been arrived at. Increasing the Schmidt 

number induces reduction in the concentration and rises 

the rate of mass transfer and skin friction coefficient. The 

velocity and skin friction increase for the increase of 

Grashof number for heat and mass transfer or 

permeability parameter and decreases for the increase of 

magnetic field parameter or Prandtl number or angleφ .  

With the increase of heat source parameter; the velocity, 

temperature and skin friction decrease while the rate of 

heat transfer increases. Also for the increase of heat sink 

parameter the velocity and temperature increase whereas 

the skin friction and the rate of heat transfer decrease. 

The velocity, temperature, skin friction and the rate of 

heat transfer decrease with increase in radiation 
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absorption coefficient in the case when Q > 0. But the 

trend is just reversed in the case when Q < 0. The 

temperature, velocity, skin friction and the rate of heat 

transfer increase with the increase in viscous dissipation 

Ec in both heat source and heat sink parameters. 
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